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Abstract
We study, in detail, the influence of molecular interactions on the Frank
elastic constants of uniaxial nematic liquid crystals composed of molecules
of cylindrical symmetry. This work is based on a weighted density functional
formalism developed by us in a previous paper (Singh et al 1992 Phys. Rev. A
30 583). A brief summary of the status of theoretical development for the
elastic constants of nematics is presented. Considering a pair potential having
both repulsive and attractive parts, numerical calculations are reported for
three nematics: MBBA, PAA and 8OCB. For these systems the length-to-
width ratio x0 is estimated from the experimentally determined structure of the
molecules. The repulsive interaction is represented by a repulsion between
hard ellipsoids of revolution (HER) and the attractive potential is represented
by the quadrupole and dispersion interactions. From the numerical results
we observe that in the density range of nematics the contributions of the
quadrupole and dispersion interactions are small as compared to the repulsive
HER interaction. The inclusion of attractive interactions reduces the values of
elastic constant ratios. The absolute values of elastic constants are sensitive
to the values of potential parameters. The elastic constants and their ratios
are in agreement with the experimental and computer simulation values. The
temperature variation of elastic constants and their ratios are reported and
compared with the experimental values. It is found that the calculated values
are in agreement with the experimental data. The twist elastic constant has a
weak temperature dependence but a pronounced influence is found on the bend
elastic constants.

1. Introduction

In a previous paper [1] (hereafter referred to as I), we developed a theory based on the density
functional formalism [2] for the deformation free-energy of any systems with continuous
broken symmetry, and applied the theory to derive expressions for the elastic constants of
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nematic and smectic-A phases of uniaxial (D∞h) symmetry. In the second paper [3] the theory
was applied to derive expressions for all the 12 bulk elastic constants of the biaxial nematic
phase of orthorhombic symmetry. These expressions of elastic constants are written in terms
of order parameters that characterize the nature and amount of ordering in the phase and the
structural parameters involving the generalized spherical harmonic coefficients of the direct
pair correlation function of an effective isotropic liquid, the density of which is determined
using a criterion of the weighted density functional formalism [4]. In the present paper the
numerical evaluation of elastic constants for the uniaxial nematic phase is reported and the
theoretical values are compared with the available experimental and computer simulation data.

According to continuum theory [5], the bulk elastic properties of nematics can be described
by three invariants K1, K2 and K3 which are known as Frank elastic constants and are associated
with the restoring forces opposing splay, twist and bend distortions, respectively. The distortion
free-energy density is written as

1

V
�Ae = 1

2
[K1(∇ · n̂)2 + K2(n̂ · ∇ × n̂)2 + K3(n̂ × ∇ × n̂)2] (1)

where n̂, the director, indicates the preferred direction of the long-axes of the molecules.
These elastic constants control almost exclusively the structure and properties of nematic liquid
crystals at mesoscopic length scale. Expressions which connect to the microscopic properties
of the mesophase are thus obviously of interest. It is difficult to measure experimentally
the absolute values of these elastic constants [6–9]. Their ratios K2/K1 and K3/K1 can be
measured more accurately [9–11]. For high duty liquid crystal displays [12], the ratio K3/K1

is desired to be as small as possible. The elastic moduli are temperature and density dependent.
The dependence on the density is pronounced. A number of measurements are reported which
show that K1 and K2 have weak temperature dependences, whereas K3 rapidly increases with
temperature, and that when the nematic–smectic-A transition temperature is approached from
above, K1 does not show any sharp change but K2 and K3 increase anomalously.

The present paper is organized as follows: in section 2, we describe, in brief, the status of
the theoretical development for the elastic constants of the uniaxial nematics and summarize the
working equations used in the calculation. The numerical evaluation and results are presented
in section 3. The paper ends with a summary and conclusions in the last section.

2. Theoretical development and working equations

First we shall comment, in brief, on the status of the theoretical development of elastic constants
of uniaxial nematics. Detail of these works are well documented elsewhere [11, 13].

In the Landau–de-Gennes theory the free-energy density is assumed to be an analytic
function of the order parameter tensor. To the extent that the order parameter is small, the
free-energy density is expressed as an expansion in its various orders and gradient terms. The
elastic free-energy density up to second order in the order parameter is written in terms of two
elastic constants L1 and L2 which are related to the Frank elastic constants as

K1 = 9
2 (L1 + 1

2 L2)P
2
2 (2)

K2 = 9
2 L1 P

2
2 (3)

and

K1 = K3. (4)

Thus the elastic constant moduli Ki vary with temperature like P
2
2. The prediction K1 = K3 is

not consistent with the experimental observation. However, this is an artifact of the derivation
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in which only the gradient terms of P2 order parameter have been considered. If the P4

term is also included in the free-energy expansion, all the three elastic constants will be
different. Pl represent the Legendre polynomial order parameters. Using an expansion of the
intermolecular potential in spherical harmonics Priest [14] also arrived at the same conclusion.
For the special case of dispersion forces, Nehring and Saupe [15] calculated (up to the order

P
2
2) the ratio of the elastic constants and got the result Ki ∝ P

2
2, and

K1:K2:K3 = 5:11:5.

This is not in agreement with the experimental finding. Apart from the temperature dependence
of the elastic constants, via P2 order parameter, there is also a dependence on the density.
Priest [14] showed that the deviation from the equality K1 = K3 is related in a simple way to
the ratio P4/P2 and

K1/K = 1 + � − �′(P4/P2) + · · · (5)

K2/K = 1 − 2� − �′(P4/P2) + · · · (6)

K3/K = 1 + � + 4�′(P4/P2) + · · · (7)

where K = 1
3 (K1 + K2 + K3). The quantity � and �′ are positive constants which depend

on the molecular properties. For the case of hard spherocylinders, the constants � and �′
were found to depend on the length–width ratio, x0, of the molecules. Most of the hard rod
models [11] are strictly valid only for the very long and thin rods and they usually predict too
large a value for K3 and cannot reproduce the temperature dependences of the elastic constants.

Several workers [11, 13] have evaluated the elastic constants for the van der Waals type
potential described by hard spherocylinders with superimposed attractive interactions. While
the Stecki and Poniewierski [16] treatment is based on the direct correlation function approach,
a mean field (MF) approximation has been adopted by Kimura et al [17]. These authors found
that K3 > K1 > K2 and that the temperature dependences of their ratios are in accordance
with the experiment. Using generalized van der Waals (GVDW) theory [18], which couples the
contributions of the short- and long-range pair potentials, the elastic moduli were evaluated
in a model based on the distributed harmonic forces [19] between the molecules. In this
work both the repulsive and attractive forces have been considered as being distributed along
the molecules. This approach disregards the temperature dependence of elastic constants
and assumes perfect orientational order, i.e. P2 = P4 = 1. It is a variant on the ideas
of Gelbart and co-workers [18] who studied the combined effect of repulsive and attractive
forces. Zakhrov [20] evaluated the elastic constants and order parameters by using a theory
that is based on the method of conditional distribution (MCD) [21]. This method introduces
a concept of reduced distribution functions which obey infinite chains of integro-differential
equations. For arbitrary equations of the chains based on the concept of the mean-force
potential (MFP) [22, 23] a truncated procedure was adopted. The numerical solution exhibits
certain qualitative features. The order parameters decrease with increasing volume and
temperature. While the observed values of K1/K and K2/K increase with increasing volume,
the values of K3/K decreases with it. K1/K increases strongly with the length–width ratio
and K2/K decreases with it, and 0.5 < K3/K1 < 3.0 and 0.5 < K2/K1 < 0.8.

Several workers have considered the application of the density functional theory to study
the elastic properties of nematics. A detailed account of these works are summarized elsewhere
by one of us [11, 13]. In this theory an exact expression for the elastic free-energy is obtained
in terms of order parameters and direct correlation functions. The correlation functions of
the ordered phases are, in general, not known and hence need to be approximated. The
functional Taylor expansion is performed to obtain the n-particle direct correlation function
of an inhomogeneous system from the n- and higher-order direct correlation functions of a
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uniform system. The elastic constants of nematics were calculated for a number of model
systems using approximate forms of the pair correlation function of the medium. However,
none of these approximate forms of the pair correlation function gives the structure of the
medium correctly, and so the results reported are not expected to be accurate. An alternative
method has been proposed [24] to evaluate the direct correlation functions in nematic fluids of
soft ellipsoids from the computer simulations and then using these correlation functions elastic
constants are determined from the Poniewierski–Stecki theory [16]. Osipov and Hess [25] have
used the model of perfect local orientational order to write explicit expressions for the elastic
constants of calamitic and discotic nematics. This work [25] is based on the Poniewierski and
Stecki [16] density functional approach and assumes ellipsoidal shape for the equipotential
surfaces to relate the direct correlation function to that of the sphere fluid by means of the
affine transformation. They have discussed the dependence of the ratio K3/K1 on x0.

2.1. Weighted density functional approach: expression for the elastic constants

The density functional theory (DFT) has developed as a cost-effective procedure for studying
the physical properties of non-uniform systems. An excellent account of the DFT and its
application has been given by Singh [2]. A brief but self-contained account of the DFT in
a form appropriate to the development of the properties of the liquid crystalline phase is
summarized by one of us [11, 13].

The main idea of the theory is stated here. The single particle density distribution ρ(x)

provides us with a convenient variational quantity to specify an arbitrary state of a system.
One may consider a variational thermodynamic potential W (T, P, [ρ(x)]) as a function of
ρ(x). The vector x indicates both the location r of the centre of a molecule and its relative
orientations � described by Euler angles �, θ and � . For an isotropic uniform system, ρ(x)

is independent of positions and orientations. The equilibrium state of the system at a given T
and P is described by the density ρ(T, P, x) corresponding to the minimum of W with respect
to ρ(x). This forms the basis of the density functional theory.

The basic thermodynamic potential used to determine the isothermal elastic properties of
a system, consisting of N particles in volume V at temperature T , is the Helmholtz free-
energy A[ρ]. Elasticity is associated with the behaviour of A[ρ] with respect to small
deformation of the system away from the equilibrium(ground) state [1]. In the density
functional formalism, �A[ρ], which represents the excess reduced free-energy arising due to
intermolecular interactions, can be used as a generating function for the correlation functions.
Adopting this procedure and using the symmetry of the system, the free-energy can be expressed
as

β A = β Au + β�Ae (8)

where β Au is the reduced Helmholtz free-energy of a system of undistorted phase and �Ae

is the free-energy associated with the distortion. β = 1/kBT , where kB is the Boltzmann
constant.

In the weighted density functional approach the contribution to the free-energy due to the
deformation is written as [1]

β�Ae[ρ] = 1
2

∫
dx1

∫
dx2 [ρe(x1)ρe(x2) − ρ(x1)ρ(x2)]C (2)(x1, x2, ρ) (9)

where ρe(xi) and ρ(xi) represent, respectively, the singlet distribution functions corresponding
to the deformed and undeformed phases, respectively. Here the C (2) represents the direct pair
correlation function (DPCF) of an effective isotropic liquid. The effective density ρ is found
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using the relation [4],

ρ = 1

ρ0V

∫
dx1

∫
dx2 ρ(x1)ρ(x2)ω(x1, x2; ρ) (10)

where ρ0 is the averaged density of the ordered phase and ω is a weight factor. ρ[ρ] is viewed
here as a functional of ρ(x). To ensure that the approximation becomes exact in the limit of a
uniform system, the weight factor ω must satisfy the normalization condition∫

dx2 ω(x1, x2; ρ) = 1. (11)

In writing equation (9) it is assumed that the direct pair correlation function does not change
due to the deformation.

The elastic constants are defined by the second-order term of expansion of the free-energy
of the deformed state around the free-energy of the equilibrium (ground) state in the ascending
powers of a parameter, which measures the deformation. The first term of this expansion is
balanced by the equilibrium stresses of the ground state. One defines the elastic free-energy
per volume as

Ee

V
= 1

V
[�Ae[ρ] + P(Vd − V )]

where Vd is the volume of the deformed sample and P the isotropic pressure.
For ρ(x) and ρe(x) we write the usual expansion [1] in terms of Fourier series and

Wigner rotation matrices, in which order parameters appear as expansion coefficients. Since
the isotropic fluid DPCF is an invariant pairwise function, we write its spherical harmonic
expansion [26]. Assuming that molecule 1 at the origin with a principal director n̂(r1) pointing
in the direction of the space-fixed (SF) Z -axis and molecule 2 is at a distance r12 from the
origin where n̂(r2) represents the direction of the local principal director (see figure 1 in [1]),
using the rotational properties of generalized spherical harmonics, exploiting the molecular
and phase symmetries of the system and carrying out angular integrations, we obtain the elastic
free-energy density for a uniaxial nematic phase of axially symmetric molecules

1

V
β�Ae[ρ] = −1

2
ρ2

n

∑
l1l2l

′ ∑
m

[
(2l1 + 1)(2l2 + 1)

(4π)2

]1/2

Pl1 Pl2 Cg(l1l2l, omm)

×
∫

dr12 Cl1l2l(r12)

[(
4π

2l2 + 1

)1/2

Yl2m(�χ(r12)) − 1

]
Y ∗

lm(r̂12) (12)

where ρn is the nematic number density. The prime on the summation indicates that l1 and
l2 are even. r̂12 = r12/|r12| is unit vector along the intermolecular axis, Cg are the Clebsch–
Gordon coefficients, Cl1l2 l are the spherical harmonic expansion coefficients of the direct pair
correlation function of an isotropic liquid, and �χ(r12) represents the angle between the
principal director at r1 and r2. Confining the variation of the director at r2 in a plane, the
Yl2 m(�χ(r12)) is expressed [1] in terms of the distortion angle which is assumed to be small.
Performing the angular integration over r̂12 and comparing equation (12) with equation (1),
the following expressions for the elastic constants of uniaxial nematic phase composed of
cylindrically symmetric molecules are obtained,

βKi =
∑
l1,l2

′
βKi(l1, l2). (13)

The terms of this series were evaluated for 2 � l1, l2 � 8 and are given in I. The explicit
expressions for the first few terms of the series can be written as

βK1(2, 2) =
(

5

4π

)1/2

ρ2
n P

2
2

[
1

2
J220 − 1√

14
J222

]
(14)
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Figure 1. Comparison between the calculated (full curves) and experimental [6] values of elastic
constants for PAA (x0 = 2.87) as a function of temperature. •, ◦ and � represent, respectively,
the experimental values of K1, K2 and K3.

βK1(2, 4) = −3

4

(
5√
14π

)
ρ2

n P2 P4 J242 (15)

βK1(4, 4) =
(

5

4π

)1/2

ρ2
n P

2
4

[√
5J440 − 13

2
√

77
J442

]
(16)

βK2(2, 2) =
(

5

4π

)1/2

ρ2
n P

2
2

[
1

2
J220 +

√
2

7
J222

]
(17)

βK2(2, 4) = ( 1
3 )βK1(2, 4) (18)

βK2(4, 4) =
(

5

4π

)1/2

ρ2
n P

2
4

[√
5J440 +

47

2
√

77
J442

]
(19)

βK3(2, 2) = βK1(2, 2) (20)

βK3(2, 4) = − 4
3βK1(2, 4) (21)

and

βK3(4, 4) =
(

5

4π

)1/2

ρ2
n P

2
4

[√
5J440 +

17√
77

J442

]
. (22)
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The structural parameters appearing in these expressions are defined as

Jl1l2 l =
∫

r4
12 dr12 Cl1l2 l(r12). (23)

3. Calculation and results

For evaluating the values of elastic constants (equation (13)) we need the values of order
parameters (as a function of temperature), generalized spherical harmonic coefficients of the
direct pair correlation function (DPCF) of an effective fluid (as a function of density and length–
width ratio x0), and information about the constituent molecules, namely, electric multipole
moments, geometry of the repulsive core, length–width ratio, etc, as input parameters.

Since in the limit of long-wavelength distortions the magnitude of the order parameters are
assumed to remain unchanged, the values of the order parameters at a given temperature and
density may be either determined experimentally or calculated from a theory. While reasonably
accurate values of the order parameter P2 from the experimental data are available for a number
of systems over a range of temperatures, our knowledge about P4 is scant. In the calculation

here we use the values of P2 as determined by the experiments and estimate P4 as P4/P2 = P
2
2.

We have found that the values of P4 as a function of temperature for PAA estimated in this way
are in good agreement with the experimental data [27] of deuteriated p-azoxyanisole obtained
from coherent neutron scattering experiments. Using available experimental data of P2 for
PAA [28] and MBBA [29] we draw smooth curves and the values of P2 used in the calculation
correspond to these curves. For 8OCB we use the experimental values of P2 as measured by
Madhusudana and Pratibha [10].

The C-harmonic coefficients Cl1l2l for a given system can, in principle, be found either by
solving the Ornstein–Zernike equation with suitable closure relation [26, 30], or by adopting
a perturbative scheme which is based on the fact that the fluid structure at high densities is
primarily controlled by the repulsive part of the interaction. However, such calculations for
non-axial molecules are very complicated and may need enormous computational efforts to
generate reliable data for C-harmonic coefficients [31].

In the rigid molecular approximation it is assumed that the intermolecular potential energy
depends upon only the position of the centre of mass and on its orientations. This kind of
approach neglects the flexibility of the molecular structure which plays an important role in the
stability of many liquid crystalline phases. In view of various complexities in the intermolecular
interactions, one is often forced to construct models to map the molecules. We consider here
a model potential described by hard ellipsoids of revolution with superimposed attractive
(electrostatic) interactions. As discussed below, due to symmetry reasons the contributions of
dipole–dipole and dipole–quadrupole interactions to the free-energy, and hence to the elastic
constants, vanish.

We adopt the following form for the interaction potential between two molecules having
prolate ellipsoidal symmetry

u(r12,�1,�2) = (uHER + uqq + udis)(r12,�1,�2) (24)

where uHER represents the repulsion between hard ellipsoids of revolution (HER) and the
subscripts qq and dis indicate, respectively, the interactions arising due to the quadrupole–
quadrupole and dispersion forces. The explicit from of these interactions are given in I [1].

In this paper we study the influence of HER, quadrupole and dispersion interactions on
the elastic properties of three nematics: p-azoxyanisole (PAA), N-p-methoxybenzylidene- p-
butylaniline (MBBA) and 4′-n-octyloxy-4-cyanobiphenyl (8OCB). We compare the calculated
values of elastic constants with the experimental and simulation data.
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The molecular structures of PAA and MBBA were determined by 14N nuclear quadrupole
resonance [32] and line shape [33] studies. We have used this structure of a molecule to
estimate the value of x0 from the bond lengths and bond angles of the constituent units. For
8OCB the usual chemical structure has been used to estimate x0. The estimated values of x0

are 2.68, 2.87 and 4.88 for MBBA, PAA and 8OCB, respectively.
For evaluating structural parameters, Jl1l2l , as a function of density and x0, the values of C-

harmonic coefficients Cl1l2l for the potential model (24) are needed. As the evaluation of Cl1l2l

is difficult, in a calculation only a finite number of Cl1l2 l for any orientation dependent function
can be handled. It has been shown [1, 30] that for the potential model (24) the inclusion
of all the harmonic coefficients up to indices l1, l2 = 4 makes the series fully convergent.
The C-harmonic coefficients in the body-fixed (BF) frame are written as an expansion series
involving u-potential harmonics and correlation function g-harmonics. The space-fixed (SF)
frame harmonic coefficients are found by the usual linear transformation [26]. From the fact
that C-harmonic coefficients which contribute to the free-energy of uniaxial mesophase of
cylindrically symmetric molecules have even l1 and l2 indices and that the CHER-harmonics
survive only for the even values of l1 and l2 indices, we note that only those interactions will
contribute to the C-harmonics which have non-vanishing u-harmonics for the even values of
l1 and l2 indices. For the electrostatic (dipole–dipole, dipole–quadrupole and quadrupole–
quadrupole) interactions the non-vanishing potential harmonic coefficients in the BF frame are
udd

110, udd
111, udq

120, udq
121, uqq

220, uqq
221 and uqq

222. Therefore, we concluded in I that the dip–dip and
dip–quad interactions do not contribute to the free energy and hence to the elastic constants.

The PY closure relation has been solved by Singh and co-workers [30] for the gHER, hHER

and CHER harmonics for x0 = 3.00, 3.25, 3.50 and 4.00. Taking their results we estimated
in I the values of Cl1l2l for the quadrupolar and dispersion interactions. Adopting the same
procedure we have evaluated here these harmonics for x0 = 2.68, 2.87 and 4.88. With known
C-harmonic coefficients we evaluated the values of structural parameters as a function of
reduced density ρ∗ (=ρnd3

0 ) where d0 is the molecular diameter.
We evaluate the contribution of the individual terms of the series

Ki = Ki (2, 2) + 2Ki(2, 4) + Ki(4, 4) (25)

for the repulsive (HER), dispersion and quadrupole interactions for three values of x0 =
2.68(MBBA), 2.87(PAA) and 4.88 (8OCB). In the calculation we observe that the absolute
values of the elastic constants are sensitive to the values of potential parameters, namely
quadrupole moment �∗2 (=�2/ε0d5

0 ), ε0/kB and d0. However, we have made no attempt
here to fit the experimental data by adjusting these parameters. We preferred to perform
calculations for several sets of parameters and thus investigate the effect of these parameters
on the elastic constants. Taking the values of ε0/kB = 525 K and d0 = 5.36 Å Tsykalo
and Bagmet [34] found in their MD study good quantitative agreement for the temperature
dependence of the order parameter between the theoretical and experimental data of PAA
(x0 = 3.0). The values of ε0/kB for PAA (x0 = 3) were estimated by Singh and Singh [35] on
the assumption that the liquid–solid transition temperatures at the triple point obey a simple
scaling law, T ∗

t (=kBTt/ε0) = C ′ where C ′ is a constant independent of x0. Taking C ′ = 0.68
(the reduced triple point temperature for the Lennard-Jones (12-6) system) they found that
ε0/kB = 575 K. The values of ε0/kB and d0 selected by us for PAA (x0 = 2.87) are consistent
with these values and for the other two systems MBBA and 8OCB the values of potential
parameters have been chosen corresponding to their length–width ratios. As the value of
quadrupole moment increases, for a given set of ε0/kB and d0, the absolute values of elastic
constants Ki increase but the values of their ratios decrease. With increasing value of molecular
diameter, for the given values of �∗2 and ε0/kB, the absolute values of Ki decrease whereas
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Figure 2. Comparison between the calculated (full curves) and experimental [7] values of elastic
constants for MBBA (x0 = 2.68) as a function of temperature. •,◦ and � represent, respectively,
the experimental values of K1, K2 and K3.

the values of their ratios increase. For given values of �∗2 and d0 a small increase in Ki but a
slight decrease in their ratios is found with increasing values of ε0/kB.

A number of observations regarding relative contributions of HER, dispersion and
quadrupole interactions have been made from this calculation. The series (25) is found to
converge rapidly for the molecules interacting via the interaction potential (24). In the density
range of nematics the contributions of quadrupole and dispersion interactions are small as
compared to the repulsive HER interaction. For a given x0, K HER

3 (2, 4) is positive whereas
K HER

2 (2, 4) and K HER
1 (2, 4) are negative. Consequently, we find that K HER

3 > K HER
1 > K HER

2
and the ratio (K HER

3 /K HER
1 ) > (K HER

2 /K HER
1 ). From a MD simulation for a HER system

of x0 = 3.0 at ρ∗
n = 0.354, Allen and Frankel [36] found that (K HER

2 /K HER
1 ) = 0.929 and

(K HER
3 /K HER

1 ) = 3.414. Here in this work we have found that:

(i) for x0 = 2.87 (PAA), ρ∗
n = 0.315, (K HER

2 /K HER
1 ) = 0.772 and (K HER

3 /K HER
1 ) = 2.008

and
(ii) for x0 = 2.68 (MBBA), ρ∗

n = 0.35, (K HER
2 /K HER

1 ) = 0.691 and (K HER
3 /K HER

1 ) = 1.272.

The corresponding experimental values of these ratios K HER
2 /K HER

1 and K HER
3 /K HER

1 as quoted
by Allen and Frenkel [36] for a comparison with simulation results are, respectively, for PAA
0.63 and 2.50 and for MBBA 0.618 and 1.455. Our results for the HER system is in accordance
with that of Allen and Frankel [36] and Osipov and Hess [25] results. We find that for all the
three systems the ratios K HER

2 /K HER
1 and K HER

3 /K HER
1 are higher than the experimental values
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Figure 3. Comparison between the calculated (full curves) and experimental values of the elastic
constants ratios for PAA as a function of temperature. The experimental ratios [6] are shown as
K3/K1: ◦ and ∗; K3/K : � and K1/K : �.

and that the inclusion of dispersion and quadrupole interactions reduces the values of elastic
constant ratios K2/K1 and K3/K1.

For a given x0 and quadrupole moment the contribution of K qq
i (4, 4) is much smaller as

compared to K qq
i (2, 2). As the value of the quadrupole moment increases the contribution of

each individual term of the series (25) and K qq
i increase significantly. The numerical values of

K qq
1 and K qq

3 are positive whereas K qq
2 is negative. The influence of the dispersion interaction

on the elastic constants is small as compared to the quadrupole interaction.
The temperature dependence of the elastic constants are mainly due to the variation of order

parameters with temperature. Experimentally it is difficult to determine the absolute values
of the elastic constants. It is the ratios K2/K1 and K3/K1 which are usually measured and
are more accurate. In addition to these ratios the other ratios which are found more accurately
from the experiments are Ki/K . In accordance with the experiments we observe, for all the
systems, that the ratio K3/K1 decreases significantly with the increasing temperature whereas
the ratio K2/K1 is more or less independent of the temperature. So here in the following
figures we show a comparison between the calculated and experimental values of Ki for the
PAA, MBBA and elastic constant ratios K3/K1, K1/K and K3/K for the PAA, MBBA and
8OCB.

Figure 1 compares the value of Ki as a function of temperature for PAA. It can be seen
that the theoretical values are consistent with the experimental data. However, the theory gives
higher values for K3 and K2 whereas the values of K1 are in reasonable agreement with the
experiment. In the case of MBBA (figure 2) a rapid increase in K3 with the temperature has



Elastic constants of nematic liquid crystals of uniaxial symmetry 7179

0.94 0.96 0.98 1
T/TNI

0.5

1

1.5

2

R
at

io
s 

of
 e

la
st

ic
 c

on
st

an
ts

K3/K1

K3/K

K1/K

Figure 4. Comparison between the calculated (full curves) and experimental values [7] of the
elastic constant ratios for MBBA as a function of temperature. The experimental ratios are shown
as K3/K1: �; K3/K : ∗ and K1/K : ◦.

been found as compared to its experimental values. K1 and K2 show a reasonable agreement
between theory and experiment.

Figures 3–5 show a comparison between the temperature dependences of calculated and
experimental values of K3/K1, K1/K and K3/K for PAA, MBBA and 8OCB, respectively. It
can be seen that for all of these systems theoretical values are consistent with the experimental
data. In the case of PAA (figure 3) the ratio K3/K1 decreases significantly with temperature.
A weak temperature dependence is found for the ratios K3/K and K1/K . As temperature
increases the values of K3/K decrease whereas K1/K increase. A similar trend is found for
the MBBA (figure 4). In the case of 8OCB (figure 5) a similar but more pronounced variation of
these ratios with temperature is observed. As physically expected near the nematic–smectic-A
transition a pronounced increase in the ratio K3/K1 and K3/K is found but the ratio K1/K
shows a sudden decrease. Further, we have found that in the vicinity of the SA phase the
divergence in K3 is more dominant than that of K2.

Table 1 shows the variation of elastic constant ratios with length–width ratio near the
nematic–isotropic transition temperature. It can be seen that with x0 the ratios K3/K1 and
K3/K increase whereas K1/K and K2/K decrease.

4. Summary and conclusions

Using a molecular theory as developed by us [1] for the elastic free-energy of molecular ordered
phases, we have calculated the elastic constants of uniaxial nematic liquid crystal composed
of molecules of cylindrical symmetry. This theory is based on the weighted density functional
formalism [4] and writes exact relations for the elastic constants in terms of the order parameters
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Figure 5. Comparison between the calculated (full curves) and experimental [10] values of elastic
constants ratios for 8OCB as a function of temperature. The experimental ratios are shown as
K3/K1: �; K3/K : ∗ and K1/K : ◦.

Table 1. Ratio of elastic constants of nematic liquid crystals near the nematic–isotropic transition
temperature TNI.

x0 K3/K1 K3/K K1/K K2/K

2.68 1.211 1.276 1.053 0.747
2.87 1.458 1.34 0.919 0.739
4.88 1.542 1.409 0.917 0.682

characterizing the nature and amount of ordering, and the structural parameters involving the
harmonic coefficients of direct pair correlation function. No accurate information about the
correlation functions for an inhomogeneous system is available. However, it can be found
for an isotropic fluid either by solving the integral equation theories of the liquid state or by
computer simulation. So the theory writes relations for the elastic constants in terms of the
direct pair correlation functions of an effective isotropic liquid having density determined by
the scheme of Denton and Ashcroft [4].

For evaluating the elastic constants we need in the theory,as input parameters, the values of
order parameters, P2 and P4, as a function of temperature, C-harmonic coefficients, Cl1l2l , as
a function of density and length–width ratio and the molecular parameters. In the calculation

we use the value of P2 as obtained from experiments and estimate P4 as P4/P2 = P
2
2.

The length–width ratio of a molecule has been estimated from its structure as determined by
experiments. The C-harmonic coefficients have been determined by solving the PY closure
relation.

The influence of repulsive interaction described by hard ellipsoids of revolution (HER) and
attractive (dispersion and quadrupole) interactions on the elastic constants of three nematics,
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PAA, MBBA and 8OCB has been investigated. The calculated values have been compared
with experimental and simulation data and a reasonable agreement has been found.

The values of elastic constants ratios for the HER system are higher than the experimental
values but are consistent with the MD simulation of Allen and Frenkel [36]. Further, we have
found that inclusion of dispersion and quadrupole interactions in the pair potential reduces the
values of elastic constant ratios. The temperature dependences of the elastic constants and
its ratios have been investigated. It is observed that the calculated values are in reasonable
agreement with the experimental data. We have seen that these values are sensitive to the values
of the input parameters. So, as more accurate values of these parameters become available,
more accurate values for the elastic constants will result from the theory.
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